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Abstract
Background  The European Union has established a strategic objective to attain carbon neutrality across the 
continent by the year 2050; however, this complex undertaking is shaped by a variety of influencing factors. It 
is particularly important to monitor the effects of such a long-term strategy, as it will influence all aspects of the 
European Union’s sustainable energy development as well as the welfare of its citizens. Since no universally accepted 
methodology exists for tracking the effects of decarbonization, the use of machine learning as a method of artificial 
intelligence is proposed—not only to generate concrete results but also to evaluate its applicability for this purpose. 
The main objective of this research is to assess the trends of 13 selected energy indicators that are vital to the 
decarbonization initiative. The research was conducted on a sample of 27 countries for the period from 2013 to 2030 
using a novel predictive model developed in the Python runtime environment.

Results  The primary findings of the research indicate that the EU is likely to experience significant fluctuations 
in the values of specific indicators. The anticipated progressive rise in electricity prices is expected across all EU 
countries, accompanied by an increase in consumption. In addition, the projected growth in energy imports presents 
a significant challenge that will affect the competitiveness of the European economy and the social standing of 
its citizens. Particularly disadvantaged in the implementation of the decarbonization strategy will be landlocked 
countries that are highly dependent on energy imports and therefore vulnerable to fluctuations in prices and security 
of supply. Also at risk are countries facing difficulties in the deployment and exploitation of renewable energy sources, 
as well as those with weaker socioeconomic indicators. The results further indicate a rising risk to energy security, 
even in the wealthiest EU countries. Overall, the projections suggest an increase in CO₂ levels up to 2030, followed by 
a gradual decline thereafter. A particular challenge for managing the decarbonization strategy lies in the significant 
fluctuations of the monitored parameters, which hinder planning in every respect.

Conclusions  In light of the geopolitical and supply chain shifts post-2022, it is clear that a comprehensive 
reassessment of the strategies for managing the decarbonization of the European Union economy is necessary. 
The research findings demonstrated the effectiveness of the proposed machine learning approach, which has 
potential for enhancement due to its scalability and adaptability. The study provides governance and methodological 
recommendations.
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Background
The European Union (EU) demonstrates a strong dedi-
cation to enhancing environmental protection, having 
adopted and implemented regulations focused on this 
goal for decades. In 2019, the European Commission 
adopted the Green Deal [1], which serves as a strategic 
framework outlining the long-term trajectory of the EU's 
development. The primary objective is to attain the status 
of a climate-neutral continent by 2050, specifically aim-
ing for the total eradication of carbon dioxide emissions. 
Decarbonization necessitates significant transformations 
across all sectors of the economy [2], and also relies on 
a systematic decrease in the consumption of fossil fuels, 
particularly coal and oil, as their combustion generates 
the highest proportion of carbon dioxide emissions [3].

The process of managing decarbonization in EU coun-
tries is quite complicated, influenced by multiple factors 
and marked by substantial differences across countries 
[4]. Furthermore, the established objectives pertain not 
solely to the EU but extend to the entirety of the Euro-
pean continent, thereby rendering the governance 
process increasingly complex [5]. The perspectives of 
individual member states regarding decarbonization and 
its various components (such as activities, financing, 
monitoring, and both economic and social dimensions) 
can occasionally be inconsistent [6]. Countries seeking 
EU membership, along with certain member states, par-
ticularly in Southeastern Europe, exhibit unique charac-
teristics [7], in their economic and energy structures [8, 
9], which necessitates a tailored approach to decarbon-
ization [10]. Given that these countries are economically 
less advanced compared to the EU and lack access to 
specific EU funds for decarbonization [11, 12], it is cru-
cial for them to focus on the decarbonization planning 
process [13]. There are variations in the approach to the 
decarbonization process, even among EU countries that 
have access to special funds and mechanisms for financ-
ing it [13].

The economy's decarbonization process and the sus-
tainable development goals as a whole are already being 
influenced by changes in the EU and on the global stage 
after 2022 [14, 15]. Additionally, there is a likelihood of 
an increase in geopolitical impacts [16]. Some of them 
are directly affected by the EU.

Initially, the European Union has implemented sanc-
tions against the import of natural gas from the Russian 
Federation. It is important to consider that natural gas 
is an environmentally favorable energy source [17]. An 
adequate and complete replacement for natural gas does 
not yet exist. Issues exist regarding the physical security 

of supply [18], and the reliance on pricier energy sources 
adversely affects the competitiveness of the EU economy, 
particularly in certain member states that have depended 
on gas supplies from the Russian Federation for many 
years [19]. Moreover, a notable rise in energy prices has 
significantly impacted the social standing of citizens and 
led to a discernible shift in the perspectives of EU resi-
dents regarding decarbonization [20].

Secondly, the decarbonization process faces significant 
challenges due to issues in the supply chains of essen-
tial minerals [21], a situation that originated during the 
Covid-19 pandemic and was exacerbated by the Euro-
pean Commission's 2024 decision to halt imports of rare 
earth minerals from specific countries [22]. These min-
erals are vital for producing environmentally friendly 
goods, making their availability crucial for the decarbon-
ization effort [23]. The world's largest supplier is the Peo-
ple's Republic of China, which provided most of the EU's 
needs for rare earth minerals. The EU is actively seeking 
alternative sources for rare earth minerals from vari-
ous countries. However, the development of new supply 
chains is a lengthy endeavor fraught with unpredictabil-
ity and considerable resistance from potential exporting 
countries, primarily due to the environmental and social 
challenges associated with the extraction of these miner-
als within their borders [24].

The process of decarbonization primarily depends on 
a continuous increase in energy production from renew-
able sources. However, the energy generated through 
these means is insufficient to fully replace fossil fuels. 
Additionally, the cost of energy derived from renewable 
sources is higher, making it less favorable for both eco-
nomic stability and public acceptance [25].

Decarbonization imposes the need for major changes 
in the economy (especially in the energy sector). The 
EU has been implementing a comprehensive strategy 
aimed at systematically phasing out coal extraction, a 
major source of environmental pollution. However, this 
approach has led to an increase in electricity imports, 
and post-2022, there has been a notable rise in prices.

The social challenges associated with decarbonization 
are significant, as altering the economic structure raises 
concerns about generating employment opportunities for 
workers [26] whose jobs have been or could be displaced 
[27]. The rise in energy prices significantly affects citi-
zens' quality of life, highlighting the issue of energy pov-
erty within the EU. This phenomenon refers to a specific 
segment of the population's inability to secure sufficient 
energy for their household requirements [28].

Keywords  Decarbonization management, Energy indicators, Assessment and prediction, Machine learning, LSTM 
recurrent neural networks, European Union
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Given the numerous uncertainties associated with 
Europe's decarbonization process by 2050, it is critical 
to continuously analyze all its aspects (economic, social, 
technological, and environmental) in order to develop 
appropriate policies and make decisions that can then 
guide the modeling and refinement of the management 
process.

Methods of artificial intelligence present opportunities 
for application in specific areas of managing the decar-
bonization process, particularly in controlling the effi-
ciency of its implementation, which is accomplished by 
considering the values of selected indicators. This study 
examines the current values and forecasts the trends 
of energy-related indicators, offering a comprehensive 
understanding of the effectiveness of the EU's decar-
bonization efforts to date, with projections extending to 
2030.

The initial section of the study outlines related works 
and is followed by a detailed description of the methodol-
ogy and a comprehensive overview of the application of 
machine learning modeling. The Results section of the 
study presents a comprehensive overview of the past and 
future trends of selected energy-related indicators, fol-
lowed by the Discussion and Conclusions sections.

One of the primary challenges associated with artifi-
cial intelligence (AI) lies in its application for predicting 
trends, events, and behaviors, whether concerning indi-
vidual entities [29] or components of intricate systems 
[30]. This extends to the analysis of entire systems across 
various domains within contemporary society [31]. The 
modeling of decarbonization in the EU, as outlined in the 
introduction, is a complex process shaped by various fac-
tors that exhibit diverse trends and behaviors across dif-
ferent countries and time periods [32]. Artificial neural 
networks are commonly referred to as the most appro-
priate AI technology for this purpose [33, 34]. The com-
plexity of the problem, which encompasses numerous 
interrelated variables and extensive historical data from 
various countries, can be effectively addressed through 
the application of artificial neuron networks (ANN) 
models. Moreover, these models can be methodologi-
cally evaluated and fine-tuned [35] for specific purposes 
before their practical usage.

The recurrent neural networks (RNN) represent a sub-
type of ANN specialized for the processing of sequential 
data (e.g., time-series) [36–38]. Machine learning mod-
els are different from ones used in ANN. The same con-
cept is divided into different neuron models and network 
architectures. ANN typically consists of three or more 
layers—an input layer, one or more hidden layers, and an 
output layer—where neurons sum the inputs and forward 
them, with or without modification [39]. RNN can con-
sist of just one layer of neurons, each containing at least 

one loopback connection. Therefore, these neurons are 
commonly referred to as recurrent units.

For instance, RNNs, used in the prediction of air qual-
ity [40], overcome the limitations of existing models 
when processing numerous influential factors over long 
periods of time. Another example is the use of RNNs in 
hydrological predictions [41] to improve water resources 
management under climate change conditions. Fre-
quent anomalies in water streamflow and rainfall (com-
plex, non-linear relationships among data series) make 
it difficult to implement commonly adopted regres-
sion and ANN models. RNNs are also used in business. 
For instance, they are applied to predicting stock mar-
ket trends under uncertain investment conditions [42]. 
Further, RNNs are used to predict financial time series 
influenced by various political and economic factors 
[43]. The specific type of RNN called Long Short-Term 
Memory (LSTM) is used in most of the applications 
mentioned [44]. LSTM brings an improvement to RNNs, 
as it is designed to uncover and learn the long-term 
mutual dependencies among a large number of features 
presented in sequential data [45]. Based on published 
research and results, LSTM has been found to be appro-
priate for this study.

Methods
The research methodology was chosen to analyze and 
predict the movement of energy-related indicators cru-
cial for the decarbonization process in the EU by 2030. 
For this purpose, 13 indicators were used, selected in 
accordance with the specific challenges faced by decar-
bonization after 2022—changes in energy supply. The 
values of these indicators differ significantly from coun-
try to country and from year to year; the variations are 
almost stochastic, which makes it difficult to model the 
decarbonization process with mathematical functions. 
On the other hand, with the historical data collected, it 
is possible not only to examine the state of this process 
through 2030 but also to predict its future trajectory. The 
implementation of the objective of this study involved the 
utilization of recurrent artificial neural networks.

To achieve the primary objective of the study, RNNs 
were employed, as they represent a type of ANN adept 
at handling sequential data, including time series [44]. In 
addition to “forward” data propagation, RNNs also sup-
port “backward” data flow. Loopback connections enable 
the processing of data inputs sequentially, combining 
the memorized outcomes of previous inputs with actual 
input values. This feature allows RNNs to predict new 
data based on the sequence of previous ones.

Figure  1 illustrates a simple RNN model comprising 
four acceptors (A1-4) in the input layer and three recur-
rent units (RUs) in the hidden layer.
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Each recurrent unit receives data from all input units 
and produces outputs based on a specified function. The 
output data is fed back into the network, enabling pre-
dictions based on previous inputs. The most common 
activation functions in RNNs are the Rectified Linear 
Unit (ReLU) and the Tangent Hyperbolic function (tan-
h). ReLU is a piecewise linear function that outputs the 
input directly if it is greater than zero; otherwise, it out-
puts zero. Unlike ReLU, tan-h is a nonlinear function that 
maps real numbers to the range [-1,1]. The function's 
values are located in the first and fourth quadrants of the 
coordinate plane, with the function's zero positioned at 
the origin of the coordinate system.

The operation of a single RU from the previous exam-
ple can be represented by the following mathematical 
expression (Eq. 1).

	
ht

j = fa(
4∑

i=1

wi · xt
i + wj · ht−1

j + bias)� (1)

Simultaneously, ht
j  it represents the output RUj at step t. 

In other words, it represents the output of the activation 
function fa. Given that the RU has four data inputs, the 
aggregated input is computed as the sum of the products 
of the corresponding weights wi and input values xt

i at 
step t. The effect of the previous state on the current state 
Rudi is determined by the feedback synapse function, 
which calculates the product of the weight factor wj  and 
the previous state RUj: h

t−1
j . By adding a bias factor to 

the expression, the RU can be adjusted to better match 
the input data and RNN model structure.

Building upon the previously presented equation, the 
overall function of the network can be derived, as shown 
in Eq. 2.

	 Ht = fa(Wx · Xt + Wh · Ht−1 + Bh)� (2)

At step t, the RNN produces an output Ht, which is 
determined by the activation function fa configured for 
the entire RNN model. The function's argument com-
prises the input weight vector Wx​​, the input data vector 
Xt, the feedback weight vector Wh for the hidden layer h, 
the previous step's hidden state vector Ht−1​, and the hid-
den layer's bias vector Bh.

In the application of RNNs, the method used to adjust 
the network synaptic weights can lead to learning gra-
dient-related issues. If the weight values exceed one, an 
exponential increase in the learning gradient may occur 
for extended time series. Conversely, when weight values 
are within the [0,1] range, long time series can lead to 
gradients diminishing to near zero or vanishing entirely. 
In order to overcome this problem, a special type of 
RNN, i.e., Long Short-Term Memory (LSTM) (Fig.  2), 
was used in the research. Commonly, RU in LSTM is 
called a cell since it is modified to contain 2 components: 
Long Term Memory (LTM) and Short-Term Memory 
(STM). The LTM is responsible for maintaining the cell 
state and does not involve weighting factors, relying 
instead on adders and multipliers for its operations. Con-
versely, the STM functions similarly to traditional RUs by 
utilizing weighting factors for both the input data (x) and 
the cell's feedback synapse. The STM is tasked with stor-
ing the hidden state, which is combined with the input 
value across all elements of the LSTM structure. In the 
structure of LSTM, the units— forget gate, input gate, 
and output gate—are distinguished by having the same 
structure but serving different purposes. The Forget gate 
determines, based on the input data, whether the cell's 
current state (LTM) should be ignored (cancelled) or will 
affect the cell's training process in the current step (point 
A). The input gate multiplies its activation by the candi-
date cell state (generated by Evaluator 1) and adds this 
product to update the cell state at point B. The output 
gate is intended to form a product with the output value 
of the evaluator's new cell state (Evaluator 2). This result-
ing value represents the new hidden state and contributes 
to the formation of the cost function. The new cell state 
value and the new hidden state value are used, along with 
the input value, in the next training iteration. The cost 
function plays a crucial role in determining whether the 
LSTM is properly trained. It is also used to adjust the 
weight factors applied to the input data (including the 
hidden state and input data) across all gates.

To achieve the described functionality, the LSTM alter-
nately uses two activation functions: the sigmoid and 
tan-h functions (Fig.  3). Both are non-linear, but they 
differ in range. As previously mentioned, the tan-h func-
tion outputs values in the range [-1,1], while the sigmoid 
function outputs values in the range [0,1].

The purpose of these functions is corrective, as they 
help prevent abrupt changes in the output data in 

Fig. 1  Example of RNN
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response to large variations in the input data. Specifi-
cally, the tan-h function in the LSTM takes the input 
and the state from the feedback synapse to compute the 
cell’s output (i.e., the current state). Regardless of the 
input values—whether negative or extremely large—the 
tan-h function produces an output constrained between 
-1 and 1. At the same time, the nonlinearity of the func-
tion ensures that only small input values are passed to the 
cell’s output. For larger input values, the function weak-
ens the input, with attenuation increasing as it moves 
further from the origin along the x-axis. The sigmoid 
function in the cell controls the percentage of informa-
tion that is retained in the LTM. The sigmoid function 
enables smaller changes to be remembered at a higher 
percentage than larger ones in the LTM. In other words, 
the sigmoid function smooths out variations that could 
destabilize the prediction model, thereby indirectly pre-
venting undesirable changes in the learning gradient—
such as vanishing gradients or overfitting.

The original data used in this research are organized 
by country, with the primary source being the official EU 

database: Eurostat. The dataset covers a 10-year period, 
from 2013 to 2022. Following this, a forecast was gen-
erated for an additional eight-year period, extending to 
2030.

The names of the indicators, their corresponding 
abbreviations, and units of measurement are presented in 
the following table (Table 1):

Indicator values are grouped by countries and years. 
The structure and original data for one of the EU coun-
tries considered are given below (Table 2).

Table 1  Indicators used in the research
Indicator name Abbrev Unit of 

measurement
1 CO2 emissions per capita CO2 106metric tones

2 Electricity prices for household 
consumers

EPHH € per kWh

3 Electricity prices for non-house-
hold consumers

EPNHH € per kWh

4 Energy efficiency EE 106 tons of oil 
equivalent

5 Energy import dependency by 
product

ENIMP %

6 Energy intensity ENINT kJ per $

7 Population unable to keep 
homes adequately warm by 
poverty status

POWP %

8 Imports of electricity and heat 
derived by partner country

IMPEL GWh

9 Imports of natural gas by part-
ner country

IMPGAS 106 m3

10 Imports of oil and petroleum 
products by partner country

IMPOIL 103 tones

11 Net greenhouse gas emissions NETEM %

12 Primary energy consumption ENCONS %

13 Share of energy from renewable 
sources

RENEN %

Fig. 3  Sigmoid and tan-h functions diagram

 

Fig. 2  LSTM cell (RU) structure
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To make the data suitable for processing with an LSTM 
RNN, it first needed to be adapted to the required input 
format. Given the significant differences in the magni-
tudes of individual indicators (ranging from 10–2 to 105), 
data preprocessing was essential. The first step involved 
normalization using the MinMax method, which scales 
input values to a new range [0,1]. This transformation 
was performed using the following equation (Eq. 3).

	
Inorm

j,k,l =
Ireal

j,k,l − Imin
j

Imax
j − Imin

j

� (3)

The normalized values of the jth indicator for the kth 
country in year l are denoted by the symbol Inorm

j,k,l . The 
symbol Ireal

j,k,l  represents the actual (real) value of the jth 
indicator for the kth country in year l. The symbols Imax

j  i 
Imin

j  denote the maximum and minimum values, respec-
tively, of the jth indicator across all 27 observed countries.

In the next stage of data preparation, time series were 
generated based on a defined time window size. Three-
year sliding windows (samples) were selected, meaning 
that the lookback period in the network's learning pro-
cess is three years. Given that the data series spans ten 
years and that neural network training requires the data 
to be divided into at least two subsets (one for train-
ing and one for testing), a three-year lookback window 
was chosen for generating the samples. The nature of 
the indicator changes suggests that a two-year lookback 
period is too short, while using a window longer than 
three years results in too few training samples. The three-
year sequence was chosen as the optimal solution. This 
approach resulted in seven sliding windows and an equal 
number of target samples for network training (Fig. 4).

For the prediction model, designed as an LSTM RNN, 
the Keras library (Python) was used to construct the nec-
essary model components. The model is developed as a 
sequential artificial neural network using the keras.mod-
els.Sequential class consisting??? of two layers (Fig.  5). 
The first layer (input layer) is an RNN. It is composed of 
500 LSTM cells (recurrent units), with the keras.layers.
LSTM class used for this purpose. The number of cells 
varies based on the nature of the data for each coun-
try, with the goal of obtaining the training targets at the 
LSTM RNN level. For each unit, tan-h is specified as a 
function for evaluating cell state (LTM) and hidden state 
(STM). On the other hand, the sigmoid function is used 
for activation in the forget, input, and output gates of the 
LSTM cells. The second (output) layer consists of 13 neu-
rons, each corresponding to one of the 13 indicators (fea-
tures). These neurons are fully connected to the LSTM 
cells from the previous layer. This layer is constructed 
using the keras.layers.Dense class.
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The data model for training is presented on the left-
hand side of the figure above. It is constructed as a 3D 
tensor with 7 slides (batch size) of 13 features (indi-
cators), with years used as indices and organized in 
sequences of 3  years (rows). Training was performed in 
100 epochs, using the minimum squared error as the 
metric to monitor the process. To minimize the train-
ing loss, experiments were conducted with models hav-
ing different numbers of units in the LSTM layer. Finally, 
acceptable results were obtained with models containing 
250, 275, 400, 500, 600, and 700 units in the LSTM layer, 
depending on the specific country. As a result of the 
training process, the average loss of the models is approx-
imately ~ 10–4, and for most countries, it is around ~ 10–5. 
For each country, the optimal model is created and saved 
for further use. Consequently, the model of applica-
tion (Fig. 6) consists of three main resources: prediction 
models and datasets for 27 countries and the prediction 
logic implemented in the Python programming language, 
stored as separate files.

When the prediction logic is loaded into the system 
(Python runtime environment), it loads the model and 

dataset for the selected country based on user input, 
makes predictions, visualizes the results, and saves them 
to a specified location.

Results
The presented data visualization offers a clearer under-
standing of the variations in indicator values and their 
fluctuations across the 27 observed EU countries. To 
enhance understanding, and given the extensive range 
of indicators, four diagrams were created for each coun-
try. These diagrams illustrate the recorded decade-long 
changes in indicators (represented by a solid line) and 
the forecasts generated by the proposed model (depicted 
by a dashed line). To enhance understanding, each fig-
ure includes four diagrams that illustrate a specific set 
of interconnected indicators. The configuration of the 
indicators within the diagrams is based on their respec-
tive values, despite variations in the measurement units 
for each indicator. Consequently, the diagrams, marked 
with an a, encompass the following parameters: CO2 
emissions per capita, Population unable to keep home 
adequately warm by poverty status and Share of energy 

Fig. 5  Overview of the data model and LSTM RNN

 

Fig. 4  Method of data preparation
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from renewable sources. Diagrams marked with a b 
include parameters that characterize the energy-econ-
omy-environment nexus: Energy import dependency by 
product, Energy intensity, Net greenhouse gas emissions, 
Primary energy consumption. Diagrams marked with a c 
include parameters of electricity prices: Electricity prices 
for household consumers and Electricity prices for non-
household consumers. Diagrams marked with a d include 
energy import parameters: Imports of electricity and 
derived heat by partner country, Imports of natural gas by 
partner country, and Imports of oil and petroleum prod-
ucts by partner country.

For each EU country, the following are provided: pre-
dictions, analysis, and an assessment of the impact on 
decarbonization.

Austria
Figure  7 displays the indicator prediction diagrams for 
Austria.

The first diagram (diagram a) indicates that no sig-
nificant changes are expected in the CO2, POWP, and 
RENEN indicators in the future. A similar trend is 
observed for the indicators ENIMP, ENINT, NETEM, 
and ENCONS (diagram b). On the other hand, the elec-
tricity prices (diagram c, indicators EPHH and EPNHH) 
show a sharp increase, particularly during the period 
from 2019 to 2022. The predictions suggest that varia-
tions in electricity prices are expected to persist; how-
ever, a gradual decline is anticipated, with prices unlikely 
to return to the peaks observed in 2022. The diagram 

presents indicators related to the import of energy prod-
ucts (specifically diagram d, which includes the IMPOIL, 
IMPEL, and IMGAS indicators). Consistent oil imports 
are anticipated, while fluctuations in electricity and gas 
imports are expected to stabilize beginning in 2026.

The analysis indicates that the values of the chosen 
energy-related indicators are likely to stay stable, which 
will create favorable conditions for the country’s decar-
bonization efforts up to 2030. The prediction indicates 
that there is neither significant progress nor any setbacks 
in this regard.

Belgium
Figure 8 illustrates the progression of selected indicators 
for Belgium. The first diagram (diagram a) indicates that, 
except for CO2 emissions, no major changes in the indica-
tor values, particularly POWP and RENEN, are expected 
by 2030. The values of the CO2 indicator are expected to 
remain relatively stable. The second diagram (diagram b) 
indicates that the ENIMP indicator, despite the down-
ward trend from 2013 to 2022, will experience moderate 
growth in the coming years, with fluctuations from year 
to year.

Other indicators (ENINT, NETEM, and ENCONS) 
are anticipated to remain stable, showing no substantial 
fluctuations in their values. On the other hand, although 
electricity prices saw a slight uptick until (as illustrated 
in diagram c, indicators EPHH and EPNHH), a substan-
tial increase is expected in the coming years, continuing 
through 2030. Regarding the imports of energy products 

Fig. 6  Prediction model overview
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(diagram c, indicators IMPOIL, IMPEL, IMGAS), a steady 
increase is expected to continue through 2030.

In light of the aforementioned factors, the potential for 
effective decarbonization in Belgium is likely to encoun-
ter several challenges, particularly illustrated by the esca-
lating electricity costs and increasing energy imports. 
The anticipated rise in energy poverty is also significant. 
While the country's decarbonization policy has achieved 
notable milestones, its implications for economic com-
petitiveness—especially regarding pricing and heavy 
reliance on energy imports—and, crucially, for the social 
well-being of citizens, could prove unfavorable.

Bulgaria
The predictions for Bulgaria (Fig. 9) are outlined as fol-
lows: The POWP indicator is projected to maintain its 
downward trajectory until 2030 (diagram a); CO2 lev-
els are anticipated to remain relatively stable, whereas 
RENEN is forecasted to rise (by approximately 15% by 
2030). The ENIMP indicator, which reflects the import 
of energy products (diagram b) is expected to continue 

its downward trajectory in the coming years, while the 
ENINT, NETEM and ENCONS indicators are anticipated 
to remain relatively stable, with no notable changes. It 
is anticipated that energy product prices for households 
(EPHH) will remain relatively stable in the foresee-
able future, a trend that does not extend to the prices of 
energy products for other consumer categories (EPNHH) 
(diagram c).

The import of gas (IMPGAS) is anticipated to follow a 
relatively stable trajectory (diagram d). In contrast, elec-
tricity imports are expected to exhibit steady growth 
(IMPEL), while significant fluctuations are forecasted 
for oil imports (IMPOIL). Stable values that describe the 
energy and environmental performance of the economy 
are noticeable (Zou et al. 2022), [47]. A significant reduc-
tion in energy poverty is also expected.

In summary, the evaluation of the acquired data sug-
gests that by 2030, there will be no major advancements 
in the decarbonization of the Bulgarian economy, nor 
are any declines below the current level anticipated. The 
anticipated increase in the share of energy derived from 

Fig. 7  Indicator predictions for Austria
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renewable sources is the only indicator likely to signifi-
cantly influence the success of Bulgaria's decarbonization 
efforts by 2030.

Croatia
Indicator predictions for Croatia are presented below 
(Fig.  10). The first diagram (diagram a) indicates that 
significant fluctuations in the POWP and RENEN indi-
cators are expected until 2030, reflecting the ongoing 
trends observed over the past decade. The CO2 indica-
tor is expected to remain relatively stable throughout 
this period. The second diagram (diagram b) shows that 
energy consumption (ENCONS) is projected to experi-
ence a moderate increase, with the ENIMP indicator 
reflecting similar trends. In contrast, the NETEM indi-
cator is anticipated to exhibit significant fluctuations 
through 2030.

No notable changes in household electricity prices 
(EPHH) are anticipated; however, prices for other con-
sumer categories (EPNHH) are expected to fluctuate 

more significantly, with a pronounced upward trend (dia-
gram c). The predictions for these two indicators exhibit 
a six-year periodic pattern. The indicators represent-
ing oil and gas imports (IMPOIL and IMPGAS) display 
similar trends (diagram d), with a significant increase in 
gas imports anticipated. Conversely, electricity imports 
(IMPEL) are expected to fluctuate, following a six-year 
periodic pattern.

The forecast results suggest that Croatia is expected to 
experience an increase in energy source imports and elec-
tricity prices, which may significantly impact the social 
well-being of its citizens and the competitiveness of the 
national economy. This situation could be further aggra-
vated by a projected decline in energy production from 
renewable sources. Conversely, the projections indicate 
that CO2 emissions are expected to remain unchanged, 
which is certainly favorable in terms of decarbonization; 
however, it does not imply that significant progress can 
be expected in this area. It can be concluded that the 
primary challenge for future decarbonization efforts in 

Fig. 8  Indicator predictions for Belgium
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this country lies in electricity management. Although its 
consumption does not result in direct pollution, increas-
ing demand, rising prices, and heavy reliance on imports 
pose significant concerns.

Cyprus
For Cyprus (Fig.  11), a significant increase in the share 
of energy from renewable sources (RENEN) is pro-
jected, while CO2 levels are expected to remain largely 
unchanged (diagram a). Conversely, the POWP indica-
tor is projected to experience continuous growth through 
2030. The next diagram (diagram b) indicates a slight 
increase in energy imports (ENIMP), as well as energy 
intensity (ENINT). The NETEM indicator will continue 
to oscillate in four-year periods, with no significant 
increase anticipated. Conversely, the ENCONS indicator 
values for Cyprus are among the lowest across all 27 EU 
countries and have remained relatively stable throughout 
the observed period. Based on diagram c, it can be con-
cluded that the electricity prices for EPHH and EPNHH 

are nearly identical, with a significant increase antici-
pated through 2030.

The final diagram (diagram d) illustrates that Cyprus 
does not engage in the import of gas or electricity (indi-
cators IMPEL and IMPGAS). Oil imports (IMPOIL) are 
expected to fluctuate in the upcoming years leading up to 
2030, yet these variations are not anticipated to be sub-
stantial when compared to the preceding decade. When 
comparing IMPOIL with other indicators, the pattern of 
changes closely resembles that of the NETEM indicator.

The main challenges for decarbonization in Cyprus 
lie in the anticipated rise in electricity costs, which 
will affect both the population and the economy. As an 
island nation, it is crucial to develop a tailored solution 
to address this issue, particularly by focusing on electric-
ity generation from renewable sources. No significant 
changes in CO2 values are expected for Cyprus until 
2030. The factors previously mentioned are undoubtedly 
influenced by the structure of the country's economy, 
which is heavily reliant on tourism.

Fig. 9  Indicator predictions for Bulgaria
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Czech Republic
The subsequent illustrations depict the prediction indica-
tors for the Czech Republic (Fig.  12). The first diagram 
(diagram a) indicates that no significant changes in the 
CO2, indicator values are expected in the future, whereas 
the POWP indicator is projected to exhibit an upward 
trend. The RENEN indicator is expected to continue 
fluctuating until 2030, though with reduced amplitudes. 
It is evident that there will be no significant changes in 
the ENIMP, ENINT, NETEM, and ENCONS indicators 
through 2030 (diagram b). Conversely, electricity prices 
(diagram c, indicators EPHH and EPNHH) showed a pro-
nounced increase, especially between 2019 and 2022. The 
prediction suggests that the increase in electricity prices 
will be moderate and is expected to level off by 2028, 
after which a gradual decline is anticipated.

Diagram d presents data concerning indicators asso-
ciated with energy imports. Significant variations in 
electricity imports are anticipated to persist (IMPEL), 

whereas gas and oil imports (indicators IMPGAS and 
IMPOIL) are projected to stabilize and exhibit a declining 
trend leading up to 2030.

The primary challenge for decarbonization efforts in 
the Czech Republic is its reliance on imported energy, 
which is further complicated by the unpredictability of 
pricing and overall supply stability. The findings sug-
gest that the country's development policy will primarily 
emphasize enhancing economic competitiveness while 
striving to maintain the current levels of decarbonization 
indicators. However, it appears that substantial advance-
ments are unlikely to occur.

Denmark
For Denmark (Fig.  13), a significant upward trend is 
anticipated for POWP and RENEN indicators. As for 
CO₂, despite a slight decline in the previous period, it is 
expected to reverse this trend and show a continuous 
increase until 2030 (diagram a). A modest decrease is 

Fig. 10  Indicator predictions for Croatia
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expected for the ENCONS indicator (diagram b), whereas 
ENIMP is forecasted to rise further, albeit with some 
variability, through 2030. The ENINT and NETEM indi-
cators will maintain similar trends and are expected to 
reverse their previous decline from 2013 to 2022, show-
ing an increase until 2030.

Electricity prices (EPHH and EPNHH) will continue 
the growth trend that began in 2020 (diagram c), with the 
rate of increase expected to slow down starting in 2027. 
The import of energy products is projected to continue 
its growth (indicators IMPOIL and IMPGAS, diagram 
d). Meanwhile, fluctuations in electricity imports are 
expected, with a slight decrease observed during the final 
three years of the period analyzed.

The primary obstacles that may influence the feasibility 
of Denmark's decarbonization include, firstly, the antici-
pated rise in electricity prices (impacting both the econ-
omy and the populace), alongside the expected growth in 
energy poverty. This indicates a pressing need to focus on 

the social dimensions of ongoing decarbonization efforts, 
as the recognized trends are likely to impact the competi-
tiveness of the country's economy and, consequently, all 
other relevant indicators.

Estonia
Estonia (Fig. 14) made significant progress in the produc-
tion of energy from renewable sources between 2017 and 
2020 (the RENEN indicator, diagram a). Subsequently, a 
shift in trend occurred, and projections indicate that this 
indicator will persist in its decline until 2025, at which 
point it is expected to experience substantial growth until 
2030. The projection indicates that CO2 levels will rise 
until 2029, followed by a subsequent decrease. No sub-
stantial alterations are anticipated for the POWP indica-
tor prior to 2030. Estonia is expected to maintain low, 
stable values for ENCONS, ENIMP, and NETEM (dia-
gram b), while ENINT is projected to continue its slight 
increase until 2026, followed by stabilization and a slight 

Fig. 11  Predictions for Cyprus
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decline until 2030. Electricity prices (indicators EPHH 
and EPNHH) peaked in 2022 (diagram c).

The predictions indicate a sustained growth trajec-
tory for EPHH and EPNHH, with diminishing fluctua-
tions anticipated until 2030. The import of oil and gas 
(IMPOIL and IMPGAS) is expected to remain stable, 
while the import of electricity (IMPEL) is projected to 
continue at the elevated levels observed in the previous 
period (diagram d).

The overall findings and forecasts indicate that Estonia 
is likely to experience considerable variations in antici-
pated trends, which will undoubtedly complicate the 
development planning process across all dimensions. The 
issues of energy poverty and electricity management are 
increasingly recognized as significant challenges impact-
ing the country's economy, highlighting their critical role 
in the decarbonization process and overall management 
strategies.

Finland
Predictions for Finland generally show stable trends 
(Fig. 15). CO2 and POWP show slightly decreasing trends, 
while a significant decrease is expected for RENEN by the 
end of 2030 (diagram a). Mild downward trends are also 
observed in the ENIMP, ENINT, NETEM, and ENCONS 
indicators (diagram b). Significant alterations are antici-
pated for the EPHH and EPNHH indicators (diagram 
c), which are forecasted to enter a state of permanent 
decline post-2025. Slight downward trends are also 
expected in the import of energy products, as indicated 
by the IMPEL, IMPGAS, and IMPOIL indicators (dia-
gram d).

Considering the entire observed period, Finland main-
tains consistent values of the indicators, which presents 
a significant advantage when strategizing all facets of 
development, including decarbonization. Unlike other 
countries, Finland anticipates a decrease in electricity 
prices, as well as a reduction in the imports of electric-
ity, oil, and gas. This will significantly impact the stability 

Fig. 12  Indicator predictions for the Czech Republic
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of the country's energy-economy-environment nexus and 
the continued progress of the decarbonization process.

France
Significant alterations are anticipated for the observed 
indicators in France (Fig. 16). Aside from CO2, which is 
anticipated to experience a slight decrease, the RENEN 
indicator is projected to see substantial growth through 
2030. POWP is expected to maintain its moderate 
growth trend in the future as well (diagram a). A sig-
nificant decrease in energy consumption (ENCONS), 
a slight increase in energy imports (ENIMP) and a con-
tinued slight decline in ENINT and NETEM (diagram b) 
are expected. During the observed timeframe, a greater 
sustained increase in EPHH and EPNHH is anticipated 
compared to the preceding decade (diagram c). A similar 
trend is expected for electricity imports (IMPEL), while 
milder growth with fluctuations is anticipated for other 
energy sources (IMPOIL and IMPGAS) (diagram d).

Significant fluctuations in various indicators, along 
with a sharp rise in electricity prices and imports and the 
anticipated surge in energy poverty, will present major 
challenges for France's decarbonization strategy moving 
forward.

Germany
For Germany, the predictions show that some indica-
tors will undergo significant changes, while others will 
continue the trends observed in the previous ten years 
(Fig. 17). The RENEN and POWP indicators are expected 
to experience significant growth by the end of 2030, while 
the CO2 trend is projected to remain relatively stable (dia-
gram a). Predictions for ENINT and ENCONS indicate a 
slight decline; ENIMP is expected to continue its growth, 
while NETEM will remain nearly unchanged compared 
to the previous decade (diagram b). As in France, the pre-
dictions for the EPHH and EPNHH indicators suggest a 
sharp increase in electricity prices (diagram c). Similarly, 
the prediction for electricity imports (IMPEL) follows the 

Fig. 13  Indicator predictions for Denmark
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same upward trend. The import of other energy prod-
ucts (IMPOIL and IMPGAS) is expected to show modest 
growth accompanied by fluctuations (diagram d).

After 2022, the German economy faces many complex 
challenges, primarily related to problems in gas imports. 
Additional complications are anticipated due to the pro-
jected rise in electricity prices, which will not only affect 
the economy but also contribute to an expected increase 
in energy poverty. An increase in renewable energy share 
is expected, but not enough to meet population and eco-
nomic needs. In this context, the decarbonization of the 
German economy will largely rely on effective manage-
ment of the key aspects mentioned above.

Greece
The following are the predicted trends for the indica-
tors in Greece (Fig.  18). CO2 and RENEN are expected 
to grow slightly, while POWP is projected to remain sta-
ble until 2028 (diagram a). Except for energy consump-
tion (ENCONS), significant growth is forecasted for the 

indicators ENIMP, EININT, and NETEM (diagram b). 
Electricity prices (EPHH and EPNHH) are expected to 
continue their rapid growth trend until the end of 2026. 
Afterward, they are expected to slightly decline until the 
end of 2030 (diagram c). For oil imports (IMPOIL), the 
prediction indicates significant growth, following a simi-
lar trend to ENIMP and EININT, while the import of 
other energy products (IMPEL and IMPGAS) is expected 
to remain stable (diagram d).

To date, Greece has experienced a measured level of 
success in the decarbonization of its economy, charac-
terized by a modest initial decrease followed by a rise 
in energy intensity (which is associated with energy 
imports) and relatively consistent CO₂ emissions. The 
future poses significant challenges, primarily due to ris-
ing electricity prices, which are expected to impact on 
the competitiveness of the national economy—particu-
larly considering its strong dependence on tourism.

Fig. 14  Indicator predictions for Estonia
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Hungary
The indicator predictions for Hungary (Fig.  19) show 
year-to-year fluctuations for most variables. Apart from 
CO2, RENEN and POWP have shown periodic fluc-
tuations since 2020. These fluctuations are expected to 
continue until 2030 (diagram a). On the other hand, the 
indicators ENCONS, ENINT, ENIMP, and NETEM are 
expected to remain relatively stable (diagram b). Electric-
ity prices for households (EPHH) are projected to stay 
unchanged, reflecting the significance of social policy—
while prices for other consumers (EPNHH) are expected 
to show substantial fluctuations (diagram c). Imports of 
electricity and gas (IMPEL and IMPGAS) are predicted 
to continue oscillating similarly to previous decades, with 
IMPOIL showing only minor changes (diagram d).

Ireland
The predictions for Ireland (Fig.  20) indicate signifi-
cant fluctuations in POWP and RENEN, while CO₂ is 
expected to show only minor oscillations (diagram a). In 

contrast, indicators such as ENINT, ENIMP, ENCONS, 
and NETEM are projected to change only slightly by 
the end of 2030 (diagram b). Both EPHH and EPNHH 
are expected to exhibit considerable fluctuations fol-
lowing a similar pattern (diagram c). Apart from elec-
tricity imports (IMPEL), which are projected to remain 
relatively stable, the import of other energy products 
(IMPOIL and IMPGAS) is expected to undergo slight, 
periodic variations (diagram d).

Energy and environmental indicators influencing the 
decarbonization of Hungary's economy have fluctu-
ated considerably over the observed period. However, 
no major changes are anticipated in energy product 
imports—though this will largely depend on the Euro-
pean Union's future relationship with the Russian Fed-
eration. Future measures should be directed toward 
stabilizing and increasing the production of renewable 
energy, curbing electricity price growth, and further 
reducing the energy intensity of the economy. By moni-
toring key trends and balancing development policies, we 

Fig. 15  Indicator predictions for Finland
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can expect continued success in decarbonizing the Hun-
garian economy without compromising the economy's 
competitiveness or the social well-being of citizens.

Italy
Indicator predictions for Italy (Fig. 21) suggest significant 
growth in RENEN and CO2 emissions, with an expected 
increase in POWP by 2027, followed by a slight decline 
toward the end of the observed period (diagram a). 
Growth is forecasted for ENIMP, ENCONS, and NETEM, 
while ENINT is expected to follow a similar trend to the 
previous decade (diagram b). Electricity prices (EPHH 
and EPNHH) are projected to continue their rapid 
growth until the end of 2030 (diagram c). Energy prod-
uct imports are expected to remain relatively unchanged 
(diagram d).

The management of the decarbonization process in 
the Italian economy faces—and will continue to face—
numerous challenges, primarily reflected in the expected 
growth trends of various indicators that impede progress. 

These indicators include rising electricity prices and 
imports, increased gas and oil imports, and a further 
rise in the economy's energy intensity. In this context, 
planning for future progress requires regular reassess-
ment and a thorough analysis of various factors, allow-
ing Italy to begin recording positive signs of its economic 
decarbonization.

Latvia
Predictions for Latvia (Fig.  22) indicate trend changes 
for most indicators. With the exception of CO2, which 
remains relatively unchanged, POWP and RENEN exhibit 
opposite trends with fluctuating patterns until the end 
of 2030 (diagram a). Energy imports and consumption 
(ENIMP and ENCONS) are expected to remain stable, 
while NETEM and ENIMP will shift their previously 
opposing trends (diagram b). Trend changes are also 
forecasted for EPHH and EPNHH, with both expected to 
decline until the end of 2028 before starting to increase 
again (diagram c). The import of electricity (IMPEL) will 

Fig. 16  Indicator predictions for France
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follow a similar pattern to EPHH and EPNHH, dropping 
until the end of 2028 before rising again. Imports of gas 
and oil (IMPGAS and IMPOIL) will fluctuate with minor 
changes (diagram d).

In contrast to most EU countries, forecasts indicate a 
downward trend in electricity prices and a slight decrease 
in overall energy imports. As energy poverty diminishes 
and CO₂ emissions are projected to remain stable, it can 
be inferred that the transition toward a decarbonized 
economy in this country will occur in a steady manner 
without significant economic, social, or environmen-
tal hurdles. The most significant challenges that could 
impact the above are likely to be of a geopolitical nature.

Lithuania
Forecasts for Lithuania (Fig.  23) indicate significant 
changes in most indicators. The year 2026 marks a key 
turning point in several trends. As in many other coun-
tries—except in the case of CO₂—the POWP indica-
tor is expected to follow a downward trend until 2026, 

after which it will begin to rise. In contrast, RENEN is 
projected to maintain a steady upward trajectory from 
2024 through the end of the observed period (diagram 
a). ENCONS and ENIMP are expected to remain sta-
ble, while ENINT is predicted to follow a similar curve 
to POWP. NETEM will show a slight downward trend 
over the forecasted period (diagram b). Electricity prices 
(EPHH and EPNHH) are projected to rise significantly 
until 2026, followed by a decline (diagram c). Energy 
product imports in Lithuania are expected to fluctuate 
considerably. IMPEL is forecasted to drop sharply, while 
IMPOIL and IMPGAS will exhibit less dramatic changes. 
However, after 2026, IMPOIL is expected to rise, whereas 
IMPGAS is likely to decline (diagram d).

The process of managing the decarbonization of the 
Lithuanian economy has proven to be a complex and 
multifaceted challenge over the observed period. In the 
future, CO2 levels are expected to stabilize, although fluc-
tuations in other related indicators are likely to persist. A 
positive indicator is the expected decrease in electricity 

Fig. 17  Indicator predictions for Germany
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and gas imports, accompanied by a relatively small 
increase in oil imports. In addition, a downward trend in 
electricity prices and energy poverty is noticeable. Con-
sidering the above, it is realistic to expect limited prog-
ress in decarbonization; however, no significant negative 
trends are anticipated. Therefore, future development 
policy should focus on maintaining existing efforts while 
carefully planning new initiatives—particularly consider-
ing complex geopolitical developments.

Luxembourg
Unlike the previously described predictions, those for 
Luxembourg reveal different patterns (Fig.  24). Most 
indicators show significant changes both in the past 
decade and throughout the forecast period. The indica-
tors CO2, POWP, and RENEN are expected to reverse 
their trends in 2027 and 2028, with all three beginning 
to decline by the end of 2030 (diagram a). In contrast, 
ENCONS and ENIMP are not projected to undergo nota-
ble changes during the observation period, while ENINT 

and NETEM are expected to continue the oscillating 
trends observed over the past decade (diagram b). Addi-
tionally, significant trend shifts are anticipated for EPHH 
and EPNHH. Unlike in other countries, the changes in 
EPHH are not closely linked to those in EPNHH (diagram 
c). No major changes are expected in the import levels of 
energy products—IMPEL, IMPGAS, and IMPOIL (dia-
gram d).

The economy of Luxembourg is driven by electricity-
intensive services rather than fossil fuel-based industries. 
Given the shifting trend in electricity prices, the high reli-
ance on electricity imports, and the fluctuating share of 
renewable energy sources, energy management efforts 
should be concentrated in this segment.

Malta
Despite notable changes in the past, the predictions 
for Malta indicate only minor changes in most indica-
tors through to 2030 (Fig. 25). This can be attributed to 
Malta's status as a small island located in the southern 

Fig. 18  Indicator predictions for Greece
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Mediterranean, with a relatively small population pri-
marily employed in tourism and related service sectors. 
Unlike Cyprus, Malta imports all types of energy prod-
ucts; however, significant shifts in these imports are 
not expected. Overall, most indicators are projected to 
remain relatively stable throughout the forecast period.

Malta has so far achieved moderately positive results 
in certain aspects of decarbonization: the CO2 emission 
levels have remained stable, with slight improvements in 
the energy intensity of the economy—pointing to a clear 
direction for future efforts. Forecasts for indicators influ-
encing Malta’s decarbonization suggest that significant 
fluctuations are unlikely, which will greatly ease the over-
all management of the transition.

Poland
Another interesting forecast concerns Poland (Fig.  26). 
The fluctuations observed exemplify the typical pat-
terns of indicators throughout the projected timeframe. 
With the exception of ENIMP and IMPOIL, which are 

projected to show gradual increases, all other indicators 
are expected to undergo annual trend changes. CO2 and 
POWP are expected to diverge in trends from RENEN 
(diagram a). Similarly, ENINT, NETEM, and ENCONS 
are anticipated to exhibit synchronous trend changes 
(diagram b). The same pattern is observed for EPHH and 
EPNHH (diagram c). Finally, IMPEL and IMPGAS will 
display annual trend changes, but in contrasting direc-
tions (diagram d).

The entire observed period for Poland is characterized 
by significant oscillations across all selected indicators. 
This pattern can hinder the management of the decar-
bonization process, especially in light of the additional 
challenges posed by changes in the EU's energy policy. 
As a result, further decarbonization efforts in Poland are 
likely to be particularly challenging.

Fig. 19  Indicator predictions for Hungary
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Portugal
Significant growth is a common characteristic in the pre-
dictions for Portugal (Fig.  27). POWP and RENEN are 
expected to exhibit growth, while CO2 is projected to 
increase slightly (diagram a). Slight growth is anticipated 
for ENIMP, ENINT, and ENCONS, whereas NETEM is 
expected to grow rapidly until 2027, after which it will 
begin to decline through to the end of 2030 (diagram b). 
The growth of electricity prices (EPHH and EPNHH), 
which began in 2022, will continue rising until 2026, 
before gradually reversing and declining toward the end 
of 2030 (diagram c). Similar trends are predicted for 
the imports of energy products (IMPEL, IMPOIL, and 
IMPGAS). After significant growth through 2026, these 
imports are expected to start declining toward the end of 
the observed period (diagram d).

CO2 emission values and total energy imports are the 
only two indicators for which no significant changes are 
anticipated in the future. The rise in electricity prices will 
impact both the competitiveness of the economy and the 

social well-being of citizens, while the expected increase 
in energy imports presents specific challenges for man-
aging the decarbonization process. This context under-
scores the need for careful planning and caution moving 
forward.

Romania
In the predictions for Romania (Fig.  28), some indica-
tors show minor changes, while others exhibit signifi-
cant growth. POWP is expected to experience substantial 
growth until 2028, after which its trend will shift. In con-
trast, RENEN and CO2 are anticipated to remain largely 
unchanged (diagram a). The same pattern applies to 
ENCONS, NETEM, and ENIMP, while ENINT is pro-
jected to begin growing toward the end of 2030 (diagram 
b). The growth of electricity prices (EPHH and EPNHH), 
which began in 2022, is expected to continue rising until 
2028. After that, the trends will reverse and decline 
through to the end of 2030 (diagram c). IMPOIL is 
expected to continue rising, while no significant changes 

Fig. 20  Indicator predictions for Ireland
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are anticipated for IMPGAS. Finally, IMPEL will grow 
until 2026, after which it will begin to decline (diagram 
d).

An increase in energy intensity, electricity prices, and 
energy poverty is expected, with no significant changes 
anticipated in CO2 levels. Despite large fluctuations and 
changes in the values of individual indicators, no altera-
tions are expected in this key indicator of decarboniza-
tion success. As a result, no significant progress in this 
regard is anticipated until 2030.

Slovakia
The predictions for Slovakia show significant variation 
across indicators (Fig. 29). Some indicators are expected 
to experience considerable changes, while others are pro-
jected to follow existing trends, similar to those observed 
in the past. Large periodic changes are anticipated for 
POWP and RENEN, while CO2 is expected to maintain 
a trend of minor changes (diagram a). Minor changes are 
predicted for ENIMP, ENINT, ENCONS, and NETEM 

(diagram b). Significant periodic changes are expected 
for EPHH, with especially notable fluctuations in EPNHH 
(diagram c). Oscillations are also expected for IMPEL and 
IMPGAS, while IMPOIL is expected to remain relatively 
stable (diagram d).

Based on current and projected trends for the selected 
indicators, Slovakia most closely resembles Poland. Both 
countries are expected to experience significant yearly 
oscillations and trend changes in their economies, which 
complicate the management of decarbonization—a pro-
cess ultimately measured by carbon neutrality. CO2 levels 
are expected to remain stable for the most part, with no 
significant impact from other indicators.

Slovenia
The indicator predictions for Slovenia (Fig.  30) show 
much more stability compared to those for Slovakia. A 
steady, significant growth is expected for RENEN and 
POWP, while CO2 is projected to experience only minor 
changes (diagram a). Similarly, ENINT and NETEM are 

Fig. 21  Indicator predictions for Italy
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expected to show consistent growth, while ENIMP and 
ENCONS are likely to remain largely unchanged (dia-
gram b). Electricity prices (EPHH and EPNHH) are also 
projected to increase (diagram c). The same trends are 
expected for IMPEL and IMPGAS, while IMPOIL is 
expected to remain stable (diagram d).

An increase in the share of energy from renewable 
sources is expected, but this will be accompanied by a 
rise in energy poverty. It is projected that the prices in the 
economy will experience a more rapid increase by 2030 
compared to those for the population, alongside an antic-
ipated rise in electricity imports. However, the expected 
stability in CO2 levels indicates that no significant prog-
ress is anticipated in the decarbonization of the Slove-
nian economy.

Spain
The predictions for Spain show significant changes across 
all indicators (Fig.  31). Additionally, the trends of these 
indicators are expected to shift over the forecast period. 

For most indicators, changes are projected to occur over 
a three-year period. The trends for CO2 and POWP are 
expected to show moderate yet opposite movements, 
while RENEN is anticipated to undergo significant 
changes within a three-year period (diagram a). The 
projections for ENIMP, ENCONS, and NETEM indicate 
similar oscillating patterns, while ENINT is expected to 
follow a different, opposing trend (diagram b). A simi-
lar oscillating pattern of significant changes is predicted 
for electricity prices (EPHH and EPNHH) (diagram c). 
Finally, the import of energy products (IMPEL, IMPOIL, 
and IMPGAS) is expected to undergo periodic changes, 
with IMPEL anticipated to reverse its trend (diagram d).

Across the entire sample, Spain exhibits the larg-
est proportional oscillations among the indicators that 
describe the environmental and energy aspects of the 
economy. Additionally, electricity prices have been 
volatile and are expected to remain so with an upward 
trend until 2029. These trends are likely to influence 
both the Spanish economy and the social position of its 

Fig. 22  Indicator predictions for Latvia
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citizens, highlighting the need for focused management 
in the decarbonization of the Spanish economy moving 
forward.

Sweden
The indicator predictions for Sweden show greater sta-
bility and fewer trend changes compared to those previ-
ously presented (Fig. 32). CO2 and POWP are expected to 
experience minor changes, while RENEN is projected to 
maintain a slightly descending trend (diagram a). ENIMP, 
ENINT, and ENCONS are expected to have minor 
changes, while NETEM is predicted to undergo slightly 
more fluctuations without a noticeable trend (diagram b). 
Both EPHH and EPNHH are expected to follow a declin-
ing trend through to the end of 2030, with similar pat-
terns of change (diagram c). The prediction for electricity 
imports (IMPEL) shows a slightly ascending trend that 
fluctuates annually (diagram d).

IMPOIL is expected to experience minor yearly 
changes without a noticeable trend, while IMPGAS is 

projected to remain almost the same throughout the 
entire forecast period. These trends suggest stability in 
key energy and environmental indicators that signifi-
cantly influence the decarbonization process. However, 
no significant changes are expected in CO2 levels.

Discussion
The decarbonization of Europe constitutes a strategic 
decision that entails intricate transformations within the 
economy and society. This initiative is designed for the 
long term, extending to 2050, and thus presents a signifi-
cant challenge for governance. This is particularly evident 
when considering the events that transpired shortly after 
its adoption, including the COVID-19 pandemic, the 
crisis in Ukraine and the Middle East, and the change of 
administration in the United States, all of which have had 
a direct impact on the EU economy. Consequently, the 
ramifications of the transition to a low-carbon economy 
are currently difficult to assess realistically. The geopoliti-
cal landscape significantly impacts the supply chains that 

Fig. 23  Indicator predictions for Lithuania

 



Page 26 of 36Šimić et al. Energy, Sustainability and Society           (2025) 15:52 

the EU has depended on for many years. The design and 
adoption of the decarbonization strategy through the EU 
Green Deal certainly took these factors into account. The 
new circumstances have not led to changes in the Euro-
pean Commission's position on the direction of devel-
opment, despite differing views among member states. 
However, it is essential to develop new and/or modified 
frameworks for managing this process, which unfolds 
under a wide range of diverse and changing factors both 
within and outside the EU.

The research indicates that carbon dioxide emissions, 
a key measure of decarbonization success, did not show 
significant changes during the observed and predicted 
periods. During the period for which data is avail-
able (2013–2022), CO2 values remained very stable, a 
trend that continues thereafter. The EU Green Deal was 
adopted in 2019, and it is unrealistic to expect significant 
changes to be felt immediately. However, it is evident that 
since its adoption, unfavorable trends have emerged in 
key decarbonization indicators, primarily driven by the 

rise in energy prices. The geopolitical shifts that emerged 
post-2022 significantly influenced the core principles of 
decarbonization, notably the halt of natural gas imports 
(regarded as a more environmentally friendly energy 
option from the Russian Federation) and the discontinu-
ation of rare earth mineral imports (which are crucial for 
manufacturing processes) from the People's Republic of 
China (as of 2024).

In addition, significant changes have occurred in the 
parliaments of certain European countries, where politi-
cal actors have highlighted the shortcomings of decar-
bonization and its negative impact on their national 
economies. Public sentiment regarding decarbonization 
is showing a shift toward greater negativity. Countries 
aspiring to EU membership lag behind in all aspects of 
decarbonization and are unable to independently finance, 
implement, and monitor the necessary measures. Coun-
tries that relied entirely on fossil fuel supplies from the 
Russian Federation and whose economies are based 
on energy-intensive industries find themselves in a 

Fig. 24  Indicator predictions for Luxembourg
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particularly unfavorable position. On one hand, these 
countries must find new energy sources; on the other, 
they must reduce the share of energy-intensive indus-
tries, which will lead to a decrease in employment both 
in these industries and in coal mines. As a result, delays 
in the comprehensive and consistent implementation 
of decarbonization were observed in these countries 
up until 2022, and it is unrealistic to expect rapid turn-
arounds in the future.

The study further indicated several unfavorable fore-
casts regarding ongoing decarbonization efforts in 
Europe, particularly highlighting the growing demand 
for energy imports, especially in the most industri-
ally advanced countries: Germany, France, and Italy. 
Major issues with electricity supply already exist and are 
expected to persist in most countries, as demand exceeds 
domestic production. Meanwhile, decades of investment 
in renewable energy sources have not demonstrated their 
ability to significantly mitigate the impact of the energy 
crisis that the EU is facing. Moreover, a notable trend of 

rising energy poverty is expected even in the wealthiest 
EU countries.

Only Austria, Belgium, Croatia, and Cyprus are pro-
jected to show relative stability in the values of the 
selected indicators. It is crucial to highlight that, even 
in these countries, a reduction in CO2 emission levels is 
not anticipated, despite the fact that their economies are 
predominantly service-oriented and do not heavily rely 
on fossil fuel consumption. Only Finland and Sweden are 
consistently projected to make progress in their decar-
bonization efforts.

Each study that includes indicators of sustainable 
development has its own methodological limitations 
and specificities. The selection of indicators is subjective 
in nature but is based on the research goal, and the val-
ues are sourced from official data. The accuracy of input 
values is consistently subject to examination. In light of 
this, it is crucial to continually enhance the data collec-
tion system within the statistical services of each country. 
This applies especially to European countries that are not 

Fig. 25  Indicator predictions for Malta
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EU members, as Europe’s decarbonization efforts also 
encompass them.

In the presented predictions, a machine learning model 
was employed. The stochastic nature of the data, along 
with its multidimensionality—reflected in a large num-
ber of indicators (features) and their sequentially (time 
series), as well as the large number of observed coun-
tries—necessitated the use of LSTM recurrent neural 
networks instead of models based on probability distri-
butions or regression analysis. It was found that in sce-
narios where sudden changes in indicators occur due 
to geostrategic events and/or shifts in national politics, 
the application of machine learning in predicting decar-
bonization-related indicators yields acceptable and rea-
sonable results. Each prediction is analyzed by subject 
matter experts (SMEs) based on their existing knowledge 
and experience. However, SMEs have pointed out certain 
limitations, particularly related to anomalies in the reli-
ability of official data for individual countries.

The proposed prediction model is recommended for 
future research on Europe's decarbonization success, as 
it can be continuously improved and adapted. This can be 
achieved through updating training and validation data, 
as well as modifying machine learning model param-
eters. Additionally, the model is flexible in the event of 
changes to the indicators under consideration. For exam-
ple, new indicators can be added, and existing ones can 
be removed. Moreover, one or more indicators can be 
replaced by derived features (e.g., a new feature extracted 
via principal component analysis). These types of changes 
do not significantly affect the prediction model.

Conclusions
The main goal of this research is to evaluate the effective-
ness of the EU's current decarbonization efforts, as out-
lined in the EU Green Deal, with predictions extending 
to 2030, using machine learning methods. This goal was 
established based on the need to assess the efficiency of 
the decarbonization implementation and make forecasts, 

Fig. 26  Indicator predictions for Poland
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as the EU is facing numerous international changes and 
internal conflicts. These factors will likely impact the suc-
cess of this complex and costly endeavor, which has sig-
nificant implications for both the European economy and 
the social position of its citizens.

The research included data on 13 indicators collected 
from 2013 to 2022, covering a sample of 27 EU countries.

The research results indicate that CO2 emissions have 
remained steady throughout the period. However, sig-
nificant changes are expected in certain indicators that 
strongly influence the decarbonization of the economy—
particularly the supply and pricing of energy products, 
the combustion of which accounts for the largest share 
of CO2 emissions. The forecast shows that, with the 
exception of Finland and Sweden, all EU countries will 
experience a high degree of volatility in the aforemen-
tioned indicators. This volatility will significantly compli-
cate the formulation of public policies and raise doubts 
about the effectiveness of the decarbonization process's 
implementation.

It is important to note that the EU Green Deal serves 
as the official long-term development strategy of the EU. 
Therefore, member states are obligated to implement it 
in practice. However, significant objections have been 
raised by certain member states, citing the practical 
impossibility of consistently applying the strategy and its 
related activities. These concerns are especially relevant 
in light of the cessation of natural gas supplies from the 
Russian Federation and the shortage of rare earth materi-
als from the People's Republic of China.

Considering the results of this and similar research, 
it is unrealistic to expect that decarbonization activities 
will proceed as planned. A multi-year delay in the antici-
pated reduction of CO2 emissions is therefore expected. 
On the other hand, most countries are facing decreased 
economic competitiveness, rising energy poverty, and 
social challenges, primarily due to increasing energy 
prices and the overall cost of living. Continued insistence 
on the consistent implementation of the decarbonization 
process, given the current circumstances the EU is fac-
ing, could lead to even greater turmoil within the Union 

Fig. 27  Indicator predictions for Portugal
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and increased citizen dissatisfaction. This, in turn, could 
undermine the long-term stability, solidarity, and unity of 
the EU.

The conclusion that further decarbonization in the EU 
will unfold under the influence of complex changes is, 
therefore, unmistakable. The endeavor to enhance envi-
ronmental quality is undoubtedly a fundamental value 
and necessity for all individuals and societies. How-
ever, it appears that the initiative to decarbonize the 
economy across the European continent may be overly 
ambitious and founded on unrealistic assumptions and 
expectations.

Consequently, future research should enhance the 
comprehensive understanding of the overall decarbon-
ization strategy from multiple perspectives. Firstly, it 
is necessary to define new inputs that will facilitate the 
formulation of realistic and attainable objectives, taking 
into account the shifts that have occurred following the 
COVID-19 pandemic, which have further complicated 
the landscape post-2022. The above highlights the need 

for strong interdisciplinarity in future work, along with 
the application of artificial intelligence methods. This 
opens up the possibility of working with multidimen-
sional data from different countries, organized in time 
series, and featuring a large number of indicators. The 
proposed model serves as a solid foundation for improv-
ing predictions in conditions of great uncertainty. It pro-
vides results that are valuable for shaping new policies, 
making decisions, monitoring, and forecasting future 
trends. Of particular importance is the development of 
new methodologies based on artificial intelligence, which 
will enable the monitoring of decarbonization success. 
These methodologies will also help identify necessary 
corrections in the management of the decarbonization 
process based on the results obtained.

Fig. 28  Indicator predictions for Romania
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Fig. 29  Indicator predictions for Slovakia
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Fig. 30  Indicator predictions for Slovenia
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Fig. 31  Indicator predictions for Spain
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